1,810 research outputs found

    A crosscorrelation predistorter using memory polynomials

    Get PDF
    Amplification of signals with fluctuating envelopes inevitably leads to distortion because of nonlinear behavior of the power amplifier (PA). Digital predistortion can counteract these nonlinear effects. In this paper, a digital predistortion architecture is presented which is based on the calculation of correlation functions using coarsely quantized signals. The crosscorrelation functions are transformed to the frequency domain and the spectra are used to calculate the coefficients of the predistorter memory polynomial. This method has reduced complexity and slightly improved average performance in comparison with existing schemes

    Experimental demonstration of digital predistortion for orthogonal frequency-division multiplexing-radio over fibre links near laser resonance

    Get PDF
    Radio over fibre (RoF), an enabling technology for distribution of wireless broadband service signals through analogue optical links, suffers from non-linear distortion. Digital predistortion has been demonstrated as an effective approach to overcome the RoF non-linearity. However, questions remain as to how the approach performs close to laser resonance, a region of significant dynamic non-linearity, and how resilient the approach is to changes in input signal and link operating conditions. In this work, the performance of a digital predistortion approach is studied for directly modulated orthogonal frequency-division multiplexing RoF links operating from 2.47 to 3.7 GHz. It extends previous works to higher frequencies, and to higher quadrature amplitude modulation (QAM) levels. In addition, the resilience of the predistortion approach to changes in modulation level of QAM schemes, and average power levels are investigated, and a novel predistortion training approach is proposed and demonstrated. Both memoryless and memory polynomial predistorter models, and a simple off-line least-squares-based identification method, are used, with excellent performance improvements demonstrated up to 3.0 GHz

    Digital Predistortion in Large-Array Digital Beamforming Transmitters

    Get PDF
    In this article, we propose a novel digital predistortion (DPD) solution that allows to considerably reduce the complexity resulting from linearizing a set of power amplifiers (PAs) in single-user large-scale digital beamforming transmitters. In contrast to current state-of-the art solutions that assume a dedicated DPD per power amplifier, which is unfeasible in the context of large antenna arrays, the proposed solution only requires a single DPD in order to linearize an arbitrary number of power amplifiers. To this end, the proposed DPD predistorts the signal at the input of the digital precoder based on minimizing the nonlinear distortion of the combined signal at the intended receiver direction. This is a desirable feature, since the resulting emissions in other directions get partially diluted due to less coherent superposition. With this approach, only a single DPD is required, yielding great complexity and energy savings.Comment: 8 pages, Accepted for publication in Asilomar Conference on Signals, Systems, and Computer

    Mobile Phone Power Amplifier Linearity and Efficiency Enhancement Using Digital Predistortion

    Get PDF
    The new generation mobile communication systems using spectrum efficient linear modulation schemes (QPSK,8PSK,QAM)need linear power amplifiers in the transmission path to have good ACPR and EVM values. Linearization methods can be used to increase the linearity of the power amplifiers (PA).However,it is not reasonable o use complicated,power consuming and high cost systems. This paper presents a digital predistortion implementation for WCDMA signals using an FPGA (Field Programmable Gate Array)as DSP and investigates the application of this system in handsets.The method applied requires minimum change in the conventional transmitter path configuration but considerable PAE improvement can be achieved

    Feedback Quantization in Crosscorrelation Predistorters

    Get PDF
    Amplification of signals with fluctuating envelopes inevitably leads to distortion because of nonlinear behavior of the power amplifier (PA). Digital predistortion can counteract these nonlinear effects. In this letter, the crosscorrelation predistorter is described and the effects of quantization in the feedback path are presented. One of the effects is that the quantization noise is correlated with the signal to be quantized, resulting in reduced performance of predistortion. A technique to reduce these effects is to inject a dither signal before quantization. Because of the quantization noise and dither signal, more data has to be used to obtain estimates of the PA behavior that are accurate enough for effective predistortion

    A Digital Predistortion Scheme Exploiting Degrees-of-Freedom for Massive MIMO Systems

    Full text link
    The primary source of nonlinear distortion in wireless transmitters is the power amplifier (PA). Conventional digital predistortion (DPD) schemes use high-order polynomials to accurately approximate and compensate for the nonlinearity of the PA. This is not practical for scaling to tens or hundreds of PAs in massive multiple-input multiple-output (MIMO) systems. There is more than one candidate precoding matrix in a massive MIMO system because of the excess degrees-of-freedom (DoFs), and each precoding matrix requires a different DPD polynomial order to compensate for the PA nonlinearity. This paper proposes a low-order DPD method achieved by exploiting massive DoFs of next-generation front ends. We propose a novel indirect learning structure which adapts the channel and PA distortion iteratively by cascading adaptive zero forcing precoding and DPD. Our solution uses a 3rd order polynomial to achieve the same performance as the conventional DPD using an 11th order polynomial for a 100x10 massive MIMO configuration. Experimental results show a 70% reduction in computational complexity, enabling ultra-low latency communications.Comment: IEEE International Conference on Communications 201

    Fiber link design considerations for cloud-Radio Access Networks

    Get PDF
    Analog radio over fiber (RoF) links may offer advantages for cloud-Radio Access Networks in terms of component cost, but the behavior of the distortion with large numbers of subcarriers needs to be understood. In this paper, this is presented in terms of the variation between subcarriers. Memory polynomial predistortion is also shown to compensate for RoF and wireless path distortion. Whether for digitized or analog links, it is shown that appropriate framing structure parameters must be used to assure performance, especially of time-division duplex systems

    Analysis of Power Amplifier Modeling Schemes for Crosscorrelation Predistorters

    Get PDF
    Amplification of signals with fluctuating envelopes leads to distortion because of non-linear behavior of the Power Amplifier (PA). Digital Predistortion can counteract these non-linear effects. A crosscorrelation predistorter is a digital predistorter, based on the calculation of crosscorrelation functions using coarsely quantized signals. The crosscorrelation functions are transformed to the frequency domain and the spectra are used to calculate the coefficients of the predistorter memory polynomial. This method has reduced complexity and equivalent performance in comparison with existing schemes. In this paper, four alternative schemes to implement a crosscorrelation predistorter are analyzed. The PA characteristics can be determined either directly or indirectly using ’normal’ or orthogonal polynomials giving four alternatives. All four alternatives give significant reduction of Adjacent Channel Interference

    Dynamic selection and estimation of the digital predistorter parameters for power amplifier linearization

    Get PDF
    © © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a new technique that dynamically estimates and updates the coefficients of a digital predistorter (DPD) for power amplifier (PA) linearization. The proposed technique is dynamic in the sense of estimating, at every iteration of the coefficient's update, only the minimum necessary parameters according to a criterion based on the residual estimation error. At the first step, the original basis functions defining the DPD in the forward path are orthonormalized for DPD adaptation in the feedback path by means of a precalculated principal component analysis (PCA) transformation. The robustness and reliability of the precalculated PCA transformation (i.e., PCA transformation matrix obtained off line and only once) is tested and verified. Then, at the second step, a properly modified partial least squares (PLS) method, named dynamic partial least squares (DPLS), is applied to obtain the minimum and most relevant transformed components required for updating the coefficients of the DPD linearizer. The combination of the PCA transformation with the DPLS extraction of components is equivalent to a canonical correlation analysis (CCA) updating solution, which is optimum in the sense of generating components with maximum correlation (instead of maximum covariance as in the case of the DPLS extraction alone). The proposed dynamic extraction technique is evaluated and compared in terms of computational cost and performance with the commonly used QR decomposition approach for solving the least squares (LS) problem. Experimental results show that the proposed method (i.e., combining PCA with DPLS) drastically reduces the amount of DPD coefficients to be estimated while maintaining the same linearization performance.Peer ReviewedPostprint (author's final draft

    Low-Complexity Sub-band Digital Predistortion for Spurious Emission Suppression in Noncontiguous Spectrum Access

    Full text link
    Noncontiguous transmission schemes combined with high power-efficiency requirements pose big challenges for radio transmitter and power amplifier (PA) design and implementation. Due to the nonlinear nature of the PA, severe unwanted emissions can occur, which can potentially interfere with neighboring channel signals or even desensitize the own receiver in frequency division duplexing (FDD) transceivers. In this article, to suppress such unwanted emissions, a low-complexity sub-band DPD solution, specifically tailored for spectrally noncontiguous transmission schemes in low-cost devices, is proposed. The proposed technique aims at mitigating only the selected spurious intermodulation distortion components at the PA output, hence allowing for substantially reduced processing complexity compared to classical linearization solutions. Furthermore, novel decorrelation based parameter learning solutions are also proposed and formulated, which offer reduced computing complexity in parameter estimation as well as the ability to track time-varying features adaptively. Comprehensive simulation and RF measurement results are provided, using a commercial LTE-Advanced mobile PA, to evaluate and validate the effectiveness of the proposed solution in real world scenarios. The obtained results demonstrate that highly efficient spurious component suppression can be obtained using the proposed solutions
    • 

    corecore